§ 3.2: (cont.) 4: (§3.2, Problem 38) Find the equation for the tangent line y y= e^{-at} et t=0. Sol: de le de le de fitil de glt = de et le de le l $= e^{t} \Big|_{t=-at} \cdot (-a) = -a e^{-a}$ $m = \frac{d}{d} \left(e^{-\lambda t} \right) \Big|_{t=0} = -\lambda e^{-\lambda t} = -\lambda$ (0, e^{-2.0}) = (0,1) in on the tunged line y=-ax+1 in tangent line W: (83.2, Problem 37) Find the equation for the tangent line of y = 3 at X=1.

<u></u>
| 100/

§ 3.3: Chain rule

Obj: We study has to compute derivatives y a compositions of functions.

then: (Chain rule) If f(x) and g(x) over functions,

then $\frac{d}{dx} \left(f(g(x)) \right) = \left(\frac{d}{dx} f(x) \right) \left(\frac{d}{dx} g(x) \right)$ $\frac{d}{dx} \left(\frac{d}{dx} g(x) \right) = \left(\frac{d}{dx} f(x) \right)$

= f'(g(x)) · g'(x)

Runk: The derivative of f(x) evaluated at g(x), multiplied by the devative of g(x).

 $\frac{f(x)}{f(x)} = x^2$ and $g(x) = x^2 + 1$, then compute $\frac{d}{dx} (f(g(x)))$ and $\frac{d}{dx} (g(f(x)))$.

 $\frac{dd}{dx}(f(g(x))) = \frac{d}{dx}f\Big|_{X=g(x)}\cdot\frac{d}{dx}g$ (chain sude) $= \frac{d}{dx}(f(g(x))) = \frac{d}{dx}f\Big|_{X=g(x)}\cdot\frac{d}{dx}(x^2+1)$ $= \frac{d}{dx}(f(g(x))) = \frac{d}{dx}f\Big|_{X=g(x)}\cdot\frac{d}{dx}(x^2+1)$ $= \frac{d}{dx}(f(g(x))) = \frac{d}{dx}f\Big|_{X=g(x)}\cdot\frac{d}{dx}g$ (chain sude) $= \frac{d}{dx}(f(g(x))) = \frac{d}{dx}f\Big|_{X=g(x)}\cdot\frac{d}{dx}g$ (chain sude) $= \frac{d}{dx}(f(g(x))) = \frac{d}{dx}f\Big|_{X=g(x)}\cdot\frac{d}{dx}g$ (chain sude) $= \frac{d}{dx}(f(g(x))) = \frac{d}{dx}f\Big|_{X=g(x)}\cdot\frac{d}{dx}g$ (chain sude)

$$= a \cdot g(x) \cdot ax$$
$$= 4x(x^3+1)$$

$$4$$
: Compute $\frac{d}{dx}((4x^2+1)^7)$ and $\frac{d}{dx}(5^{2-x})$.

$$\frac{d}{dx}\left(\left(4x^{2}+1\right)^{7}\right)=\frac{d}{dx}\left(x^{7}\right)\Big|_{x=4x^{2}+1}\cdot\frac{d}{dx}\left(4x^{2}+1\right)$$

$$\frac{d}{dt}(z^n) = n \cdot 7^{n-1} \cdot \frac{dz}{dt} = ng(t) \cdot \frac{dg}{dt}$$

$$\frac{d}{dt}(e^{z}) = e^{z} \frac{dz}{dt} = e^{g(t)} \frac{de}{dt}$$

$$\frac{d}{dt} \left(\ln z \right) = \frac{1}{2} \frac{dz}{dt} = \frac{1}{9lt} \cdot \frac{dq}{dt}$$

W: Differentate The following: $(3t^3-1)^5$ · ln(g2+1) - χ²
• φ $|d| \cdot \frac{d}{dt} (|3t^3 - 1)^5 = 5 (3t^3 - 1)^7 \cdot \frac{d}{dt} (3t^3 - 1)$ $= 5(3t^3-1)^4 \cdot 3.2.t^2$ $= 45.4^{2} \cdot (34^{3} - 1)^{4}$ · dq [ln|q²+1)] = d | f(2)) | q=q(2) dq g(2) = f'(g(g)). g'(g) "ortside" f(g)= ln/g) " msi de" 9(9) = 92+1 = f'(y2+1) · aq $=\frac{1}{9^2+1}\cdot 29$ $\frac{d}{dq}f = \frac{1}{q}$ 92+1 $\frac{d}{dq} q = \frac{d}{dq} (q^2 + 1) = 2q$ Rmlc: A wreful link for same of the proofs cenered so far in the follown:

> https://tutorial.math.lamar.edu/classes/calci/ DerivativeProofs.aspx

Rule: In §2.3, he descured relative rate y change of a junction Z= f(+),

"rel. rate y change" = $\frac{f'(t)}{f(t)} = \frac{1}{2} \cdot \frac{dz}{dt}$.

Note that $\frac{d}{dt} \left(\ln 7 \right) = \frac{1}{2} \cdot \frac{d^2}{dt}$. Putting this together,

he have

rel rate q change = d (ln f(+1).

1/2: Compute the relative reate of change for the function $Z = P_0 e^{kt}$ (note P_0 , $k \in [-\infty,\infty)$).

Not: * On your our *

9: Let $f(x) = (2x-3)^3$. Find the equation 9 the tangent line at

, X = 0

· X = 2

10/: # On your our &